Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Front Psychiatry ; 15: 1357477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585476

RESUMO

Background/Objective: as internet use becomes increasingly ingrained in contemporary society, internet addiction (IA) has emerged as a global public health concern. There is ongoing debate regarding whether IA represents a distinct psychological disorder or a secondary manifestation of other existing disorders. This study aimed to examine the pathological relationship between IA and emotional disorders (ED). Method: this study compared pre-treatment characteristics and treatment process of three groups of patients (N=1292) in a naturalistic treatment setting: IA only, ED only, and comorbidity of IA and ED. Results: the IA only group differed from the other groups by reporting the highest levels of life satisfaction, adaptive emotion regulation, as well as risk behavior urges at intake. In addition, the IA only group displayed the lowest level of depressive and anxiety symptoms throughout the treatment. Conclusion: our findings contribute to a better understanding of the discreteness of IA as a potential psychological disorder and inform more effective treatment strategies for IA and its comorbid conditions.

2.
Bioorg Chem ; 147: 107371, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643564

RESUMO

Due to the strong selectivity and permeability of tumor tissue, anti-cancer peptide-drug conjugates (PDCs) can accumulate high concentration of toxic payloads at the target, effectively killing tumor cells. This approach holds great promise for tumor-targeted treatment. In our previous study, we identified the optimal peptide P1 (NPNWGRSWYNQRFK) targeting HER2 from pertuzumab, a monoclonal antibody that blocks the HER2 signaling pathway. Here, a series of PDCs were constructed through connecting P1 and CPT with different linkers. Among these, Z8 emerged as the optimal compound, demonstrating good antitumor activity and targeting ability in biological activity tests. Z8 exhibited IC50 values of 1.04 ± 0.24 µM and 1.91 ± 0.71 µM against HER2-positive SK-BR-3 and NCI-N87 cells, respectively. Moreover, superior antitumor activity and higher biosafety of Z8 were observed compared to the positive control CPT in vivo, suggesting a novel idea for the construction of PDCs.

3.
ACS Nano ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629810

RESUMO

The utilization of carbon-based fibers as a fundamental constituent holds strong appeal for diverse materials and devices. However, the poor fiber graphitic structure resulting from the heat treatment of atactic polyacrylonitrile (PAN) precursors often leads to a modest performance of carbon-based fibers. This paper takes electrospun carbon nanofibers (CNFs) as the research object and provides a seed-assisted graphitization strategy to improve the fiber graphitic structures. The typical melamine/cyanuric acid self-assembly precursor of graphitic carbon nitride is applied as supramolecular seeds in CNFs and demonstrates significant promotion of fiber graphitization, while it decomposes at elevated temperatures. Further studies show that the higher carbon content contributes to the better heat resistance of seeds; thus, nanoscale 2,6-diaminopyridine/cyanuric acid and 2,4,6-triaminopyrimidine/barbituric acid supramolecular seeds are developed. Both systems can be uniformly distributed in PAN precursors through in situ self-assembly and withstand high-temperature carbonization without severe pyrolysis. The dispersed seeds contribute to the formation of fibrillar PAN crystals and promote their conversion to ordered graphitic domains through nucleation and templating roles. The obtained CNFs exhibit increased crystallinity and graphitization degree with improved orientation and refined size of fiber crystals. As a result, the strength, modulus, and elongation at break of CNFs are comprehensively enhanced.

4.
Opt Express ; 32(7): 11271-11280, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570978

RESUMO

The advent of optical metrology applications has necessitated the development of compact, reliable, and cost-effective picosecond lasers operating around 900 nm, specifically catering to the requirements of precise ranging. In response to this demand, our work introduces an innovative solution-an all-fiber, all-polarization-maintaining (PM) figure-9 mode-locked laser operating at 915 nm. The proposed figure-9 Nd-doped fiber laser has a 69.2 m long cavity length, strategically designed and optimized to yield pulses with a combination of high pulse energy and low repetition rate. The laser can generate 915 nm laser pulses with a pulse energy of 4.65 nJ, a pulse duration of 15.2 ps under the repetition rate of 3.05 MHz. The 1064 nm amplified spontaneous emission (ASE) is deliberately filtered out, in order to prevent parasitic lasing and increase the spectral proportion of the 915 nm laser. The all-PM fiber configuration of this laser imparts exceptional mode-locking performance and environmental robustness, which is confirmed by long-term output power and spectral stability test. This compact and long-term reliable fiber laser could be a promising light source for applications like inter-satellite ranging.

5.
Burns Trauma ; 12: tkad055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601971

RESUMO

Background: Prevention of diabetic heart myocardial ischemia-reperfusion (IR) injury (MIRI) is challenging. Propofol attenuates MIRI through its reactive oxygen species scavenging property at high doses, while its use at high doses causes hemodynamic instability. Salvianolic acid A (SAA) is a potent antioxidant that confers protection against MIRI. Both propofol and SAA affect metabolic profiles through regulating Adenosine 5'-monophosphate-activated protein kinase (AMPK). The aim of this study was to investigate the protective effects and underlying mechanisms of low doses of propofol combined with SAA against diabetic MIRI. Methods: Diabetes was induced in mice by a high-fat diet followed by streptozotocin injection, and MIRI was induced by coronary artery occlusion and reperfusion. Mice were treated with propofol at 46 mg/kg/h without or with SAA at 10 mg/kg/h during IR. Cardiac origin H9c2 cells were exposed to high glucose (HG) and palmitic acid (PAL) for 24 h in the absence or presence of cluster of differentiation 36 (CD36) overexpression or AMPK gene knockdown, followed by hypoxia/reoxygenation (HR) for 6 and 12 h. Results: Diabetes-exacerbated MIRI is evidenced as significant increases in post-ischemic infarction with reductions in phosphorylated (p)-AMPK and increases in CD36 and ferroptosis. Propofol moderately yet significantly attenuated all the abovementioned changes, while propofol plus SAA conferred superior protection against MIRI to that of propofol. In vitro, exposure of H9c2 cells under HG and PAL decreased cell viability and increased oxidative stress that was concomitant with increased levels of ferroptosis and a significant increase in CD36, while p-AMPK was significantly reduced. Co-administration of low concentrations of propofol and SAA at 12.5 µM in H9c2 cells significantly reduced oxidative stress, ferroptosis and CD36 expression, while increasing p-AMPK compared to the effects of propofol at 25 µM. Moreover, either CD36 overexpression or AMPK silence significantly exacerbated HR-induced cellular injuries and ferroptosis, and canceled propofol- and SAA-mediated protection. Notably, p-AMPK expression was downregulated after CD36 overexpression, while AMPK knockdown did not affect CD36 expression. Conclusions: Combinational usage of propofol and SAA confers superior cellular protective effects to the use of high-dose propofol alone, and it does so through inhibiting HR-induced CD36 overexpression to upregulate p-AMPK.

6.
Toxicology ; : 153810, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653377

RESUMO

Black phosphorus (BP) is a new type of nanomaterial, which has been widely used in many biomedical fields due to its superior properties, but there are few studies on the toxicity of BP, especially in the reproductive system. To explore the effects of BP exposure on reproduction and reveal its molecular mechanism, we firstly investigated the potential toxicity of black phosphorus nanoparticles (BPNPs) in vivo. The results showed that BP exposure in pregnant mice can reduce the weight of fetal mice and placenta. H&E staining further indicated the changes of placental cross-section and vascular remodeling after BP treatment. Then, human exvillous trophoblast HTR8/SVneo was treated with different concentrations of BPNPs. We found that BPNPs induced significant cytotoxicity, including dose-dependent reduction of cell viability and proliferation. Trophoblast cell migration and invasion were also impaired by BPNPs exposure. Moreover, pretreatment with Cytochalasin D (Cyto-D), a classical phagocytic inhibitor, alleviated the decline of cell viability induced by BPNPs. Transcriptome sequencing showed that BPNPs exposure led to ferroptosis. Subsequently, the related indexes of iron death were detected, including increase of iron ion concentration, decrease of the ferroptosis marker, GPX4 (Glutathione Peroxidase 4), increase of FTL (Ferritin Light Chain), and the increase of lipid peroxidation indexes (MDA level and decrease of GSH level). In addition, ferroptosis inhibitor (Fer-1 and DFO) pretreatment can alleviate both the cytotoxic effects and functional impairment induced by BPNPs. In summary, our study confirmed the reproductive toxicity of BPNPs for the first time, and constructed BPNPs injury model in vitro using human villus ectotrophoblast cells and revealed the role of ferroptosis in this process, which deepened our understanding of the biosafety of black phosphorus nanomaterials.

7.
J Colloid Interface Sci ; 666: 76-87, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583212

RESUMO

The pressing demand for propylene has spurred intensive research on the catalytic dehydrogenation of propane to produce propylene. Gallium-based catalysts are regarded as highly promising due to their exceptional dehydrogenation activity in the presence of CO2. However, the inherent coking issue associated with high temperature reactions poses a constraint on the stability development of this process. In this study, we employed the electrospinning method to prepare a range of Ga2O3-Al2O3 mixed oxide one-dimensional nanofiber catalysts with varying molar ratios for CO2 oxidative dehydrogenation of propane (CO2-OPDH). The propane conversion was up to 48.4 % and the propylene selectivity was high as 96.8 % at 500 °C, the ratio of propane to carbon dioxide is 1:2. After 100 h of reaction, the catalyst still maintains approximately 10 % conversion and exhibits a propylene selectivity of around 98 %. The electrospinning method produces one-dimensional nanostructures with a larger specific surface area, unique multi-stage pore structure and low-coordinated Ga3+, which enhances mass transfer and accelerates reaction intermediates. This results in less coking and improved catalyst stability. The high activity of the catalyst is attributed to an abundance of low-coordinated Ga3+ ions associated with weak/medium-strong Lewis acid centers. In situ infrared analysis reveals that the reaction mechanism involves a two-step dehydrogenation via propane isocleavage, with the second dehydrogenation of Ga-OR at the metal-oxygen bond being the decisive speed step.

8.
Cardiovasc Toxicol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647950

RESUMO

The hearts of subjects with diabetes are vulnerable to ischemia-reperfusion injury (IRI). In contrast, experimentally rodent hearts have been shown to be more resistant to IRI at the very early stages of diabetes induction than the heart of the non-diabetic control mice, and the mechanism is largely unclear. Ferroptosis has recently been shown to play an important role in myocardial IRI including that in diabetes, while the specific mechanisms are still unclear. Non-diabetic control (NC) and streptozotocin-induced diabetic (DM) mice were treated with the antioxidant N-acetylcysteine (NAC) in drinking water for 4 week starting at 1 week after diabetes induction. Mice were subjected to myocardial IRI induced by occluding the coronary artery for 30 min followed by 2 h of reperfusion, subsequently at 1, 2, and 5 week of diabetes induction. The post-ischemic myocardial infarct size in the DM mice was smaller than that in NC mice at 1 week of diabetes but greater than that in the NC mice at 2 and 5 week of diabetes, which were associated with a significant increase of ferroptosis at 2 and 5 week but a significant reduction of ferroptosis at 1 week of diabetes. NAC significantly attenuated post-ischemic ferroptosis as well as oxidative stress and reduced infarct size at 2 and 5 week of diabetes. Application of erastin, a ferroptosis inducer, reversed the cardioprotective effects of NAC. It is concluded that increased oxidative stress and ferroptosis are the major factors attributable to the increased vulnerability to myocardial IRI in diabetes and that attenuation of ferroptosis represents a major mechanism whereby NAC confers cardioprotection against myocardial IRI in diabetes.

9.
Nucleic Acids Res ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554108

RESUMO

Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging strands, respectively. Single Dpb3 deletion (dpb3Δ) or Mcm2 mutation (mcm2-3A), which each disrupts one parental histone transfer pathway, leads to the other's predominance. However, the biological impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ mcm2-3A double mutant did not exhibit the asymmetric parental histone patterns caused by a single dpb3Δ or mcm2-3A mutation, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A and dpb3Δ mcm2-3A mutants, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones during DNA replication is essential for maintaining chromatin structure and that lower homologous recombination activity due to parental histone transfer defects is detrimental to cells.

10.
Pol J Microbiol ; 73(1): 59-68, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437464

RESUMO

This study aimed to investigate the disparities between metagenomic next-generation sequencing (mNGS) and conventional culture results in patients with bronchiectasis. Additionally, we sought to investigate the correlation between the clinical characteristics of patients and their microbiome profiles. The overarching goal was to enhance the effective management and treatment of bronchiectasis patients, providing a theoretical foundation for healthcare professionals. A retrospective survey was conducted on 67 bronchiectasis patients admitted to The First Hospital of Jiaxing from October 2019 to March 2023. Clinical baseline information, inflammatory indicators, and pathogen detection reports, including mNGS, conventional blood culture, bronchoalveolar lavage fluid (BALF) culture, and sputum culture results, were collected. By comparing the results of mNGS and conventional culture, the differences in pathogen detection rate and pathogen types were explored, and the diagnostic performance of mNGS compared to conventional culture was evaluated. Based on the various pathogens detected by mNGS, the association between clinical characteristics of bronchiectasis patients and mNGS microbiota results was analyzed. The number and types of pathogens detected by mNGS were significantly larger than those detected by conventional culture. The diagnostic efficacy of mNGS was significantly superior to conventional culture for all types of pathogens, particularly in viral detection (p < 0.01). Regarding pathogen detection rate, the bacteria with the highest detection rate were Pseudomonas aeruginosa (17/58) and Haemophilus influenzae (11/58); the fungus with the highest detection rate was Aspergillus fumigatus (10/21), and the virus with the highest detection rate was human herpes virus 4 (4/11). Differences were observed between the positive and negative groups for P. aeruginosa in terms of common scoring systems for bronchiectasis and whether the main symptom of bronchiectasis manifested as thick sputum (p < 0.05). Significant distinctions were also noted between the positive and negative groups for A. fumigatus regarding Reiff score, neutrophil percentage, bronchiectasis etiology, and alterations in treatment plans following mNGS results reporting (p < 0.05). Notably, 70% of patients with positive A. fumigatus infection opted to change their treatment plans. The correlation study between clinical characteristics of bronchiectasis patients and mNGS microbiological results revealed that bacteria, such as P. aeruginosa, and fungi, such as A. fumigatus, were associated with specific clinical features of patients. This underscored the significance of mNGS in guiding personalized treatment approaches. mNGS could identify multiple pathogens in different types of bronchiectasis samples and was a rapid and effective diagnostic tool for pathogen identification. Its use was recommended for diagnosing the causes of infections in bronchiectasis patients.


Assuntos
Aspergilose , Bronquiectasia , Microbiota , Humanos , Estudos Retrospectivos , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bronquiectasia/diagnóstico
11.
Light Sci Appl ; 13(1): 70, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453917

RESUMO

Stimulated Raman scattering (SRS) has been developed as an essential quantitative contrast for chemical imaging in recent years. However, while spectral lines near the natural linewidth limit can be routinely achieved by state-of-the-art spontaneous Raman microscopes, spectral broadening is inevitable for current mainstream SRS imaging methods. This is because those SRS signals are all measured in the frequency domain. There is a compromise between sensitivity and spectral resolution: as the nonlinear process benefits from pulsed excitations, the fundamental time-energy uncertainty limits the spectral resolution. Besides, the spectral range and acquisition speed are mutually restricted. Here we report transient stimulated Raman scattering (T-SRS), an alternative time-domain strategy that bypasses all these fundamental conjugations. T-SRS is achieved by quantum coherence manipulation: we encode the vibrational oscillations in the stimulated Raman loss (SRL) signal by femtosecond pulse-pair sequence excited vibrational wave packet interference. The Raman spectrum was then achieved by Fourier transform of the time-domain SRL signal. Since all Raman modes are impulsively and simultaneously excited, T-SRS features the natural-linewidth-limit spectral line shapes, laser-bandwidth-determined spectral range, and improved sensitivity. With ~150-fs laser pulses, we boost the sensitivity of typical Raman modes to the sub-mM level. With all-plane-mirror high-speed time-delay scanning, we further demonstrated hyperspectral SRS imaging of live-cell metabolism and high-density multiplexed imaging with the natural-linewidth-limit spectral resolution. T-SRS shall find valuable applications for advanced Raman imaging.

12.
J Integr Plant Biol ; 66(4): 700-708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409933

RESUMO

The high-affinity potassium transporters (HKTs), selectively permeable to either Na+ alone or Na+/K+, play pivotal roles in maintaining plant Na+/K+ homeostasis. Although their involvement in salt tolerance is widely reported, the molecular underpinnings of Oryza sativa HKTs remain elusive. In this study, we elucidate the structures of OsHKT1;1 and OsHKT2;1, representing two distinct classes of rice HKTs. The dimeric assembled OsHKTs can be structurally divided into four domains. At the dimer interface, a half-helix or a loop in the third domain is coordinated by the C-terminal region of the opposite subunit. Additionally, we present the structures of OsHKT1;5 salt-tolerant and salt-sensitive variants, a key quantitative trait locus associated with salt tolerance. The salt-tolerant variant of OsHKT1;5 exhibits enhanced Na+ transport capability and displays a more flexible conformation. These findings shed light on the molecular basis of rice HKTs and provide insights into their role in salt tolerance.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Tolerância ao Sal/genética , Potássio/metabolismo , Proteínas de Membrana Transportadoras , Sódio/metabolismo , Cátions , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
14.
J Phys Chem Lett ; 15(5): 1529-1538, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38299504

RESUMO

Despite the widely recognized importance of noncovalent interactions involving aromatic rings in many fields, our understanding of the underlying forces and structural patterns, especially the impact of heteroaromaticity, is still incomplete. Here, we investigate the relaxation processes that follow inner-valence ionization in a range of molecular dimers involving various combinations of benzene, pyridine, and pyrimidine, which initiate an ultrafast intermolecular Coulombic decay process. Multiparticle coincidence momentum spectroscopy, combined with ab initio calculations, enables us to explore the principal orientations of these fundamental dimers and, thus, to elucidate the influence of N heteroatoms on the relative preference of the aromatic π-stacking, H-bonding, and CH-π interactions and their dependence on the number of nitrogen atoms in the rings. Our studies reveal a sensitive tool for the structural imaging of molecular complexes and provide a more complete understanding of the effects of N heteroatoms on the noncovalent aromatic interactions at the molecular level.

15.
Int Wound J ; 21(2): e14748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358067

RESUMO

Diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN) and peripheral arterial disease (PAD) are common complications of diabetes mellitus, while diabetic peripheral neuropathy and peripheral arterial disease contribute to the pathogenesis of diabetic foot ulcers, and the pathogenic mechanisms between these three diseases still need further investigation. The keywords 'diabetic foot ulcer', 'diabetic peripheral neuropathy' and 'atherosclerosis' were used to search for related gene sets in the GEO database. Differentially expressed genes (DEGs) were screened and analysed for GO, KEGG and enrichR functional enrichment. Potential three disease biomarkers were identified by SVM-SVM-RFE and LASSO regression analysis. The results were also validated using external datasets and discriminability was measured by area under the ROC curve (AUC). Finally, biomarkers and co-upregulated genes were analysed through the GSEA and Attie Laboratories diabetes databases. A total of 11 shared genes (KRT16, CD24, SAMD9L, SRGAP2, FGL2, GPR34, DDIT4, NFE2L3, FBLN5, ANXA3 and CPA3), two biomarkers (SAMD9L and FGL2) and one co-upregulated gene (CD24) were screened. GO and KEGG pathway analysis of DEGs, enrichr enrichment analysis of shared differential genes and GSEA analysis of biomarkers showed that these significant genes were mainly focused on vasoregulatory, inflammatory-oxidative stress and immunomodulatory pathways. In this study, we used bioinformatics to investigate the intrinsic relationship and potential mechanisms of three common lower extremity complications of diabetes and identified two pivotal genes using the LASSO model and the SVM-RFE algorithm, which will further help clinicians to understand the relationship between diabetic complications, improve the diagnosis and treatment of diabetic foot problems and help doctors to identify the potential risk factors of diabetic foot.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Neuropatias Diabéticas , Úlcera do Pé , Doença Arterial Periférica , Humanos , Pé Diabético/diagnóstico , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/complicações , Diabetes Mellitus Tipo 2/complicações , Doença Arterial Periférica/genética , Doença Arterial Periférica/complicações , Biomarcadores , Fatores de Transcrição de Zíper de Leucina Básica , Fibrinogênio , Proteínas Ativadoras de GTPase
16.
PLoS One ; 19(1): e0296508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38180977

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of Ginkgolide Meglumine Injection (GMI) combined with Butylphthalide in the treatment of Acute Ischemic Stroke (AIS), and provide reference for rational clinical medication. METHODS: PubMed, Embase, Web of science, CNKI, Wanfang, VIP and other databases were searched for published studies on the treatment of AIS with GMI combined with Butylphthalide in both Chinese and English. The search period was from the establishment of the database to July 2023. The included studies that met the inclusion criteria were analyzed using RevMan 5.3 software for Meta-analysis. RESULTS: A total of 25 studies involving 2362 patients (experimental group = 1182, control group = 1180) were included. The results of meta-analysis showed that the overall effective rate of the experimental group was significantly higher than that of the control group [RR = 1.21, 95% CI (1.16, 1.26), P< 0.00001]. In addition, compared with the control group, the experimental group showed significant improvement in NIHSS score [SMD = -1.59, % CI (-2.00-1.18), P< 0.00001] and ADL score [SMD = 2.12, 95% CI (1.52, -2.72), P<0.00001], significant decrease in CRP [SMD = -2.24, 95% CI (-3.31, -1.18), P<0.0001] and TNF-α [SMD = -2.74, 95% CI (-4.45, -1.03), P< 0.005] levels, and improvement in plasma viscosity [SMD = -0.86, 95% CI (-1.07, -0.66), P< 0.00001]. However, the influence on homocysteine level remains inconclusive. Furthermore, there was no significant difference in the incidence of adverse reactions between the two groups [SMD = 0.95, 95% CI (0.71, 1.28), P> 0.05]. CONCLUSION: GMI combined with Butylphthalide shows good clinical application effects and good safety in the treatment of AIS. However, more large-sample, multicenter, randomized controlled are needed to confirm these findings.


Assuntos
Benzofuranos , AVC Isquêmico , Humanos , Benzofuranos/efeitos adversos , Ginkgolídeos/efeitos adversos , Meglumina , Estudos Multicêntricos como Assunto
17.
J Cell Physiol ; 239(2): e31162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37994152

RESUMO

The developmental fate of ovarian follicles is primarily determined by the survival status (proliferation or apoptosis) of granulosa cells (GCs). Owing to the avascular environment within follicles, GCs are believed to live in a hypoxic niche. Follicle-stimulating hormone (FSH) has been reported to improve GCs survival by governing hypoxia-inducible factor-1α (HIF-1α)-dependent hypoxia response, but the underlying mechanisms remain poorly understood. Growth arrest-specific gene 6 (GAS6) is a secreted ligand of tyrosine kinase receptors, and has been documented to facilitate tumor growth. Here, we showed that the level of GAS6 was markedly increased in mouse ovarian GCs after the injection of FSH. Specifically, FSH-induced GAS6 expression was accompanied by HIF-1α accumulation under conditions of hypoxia both in vivo and in vitro, whereas inhibition of HIF-1α with small interfering RNAs/antagonist repressed both expression and secretion of GAS6. As such, Luciferase reporter assay and chromatin immunoprecipitation assay showed that HIF-1α directly bound to a hypoxia response element site within the Gas6 promoter and contributed to the regulation of GAS6 expression in response to FSH. Notably, blockage of GAS6 and/or its receptor Axl abrogated the pro-survival effects of FSH under hypoxia. Moreover, phosphorylation of Axl by GAS6 is required for FSH-mediated Akt activation and the resultant pro-survival phenotypes. Finally, the in vitro findings were verified in vivo, which showed that FSH-induced proliferative and antiapoptotic effects in ovarian GCs were diminished after blocking GAS6/Axl using HIF-1α antagonist. These findings highlight a novel function of FSH in preserving GCs viability against hypoxic stress by activating the HIF-1a-GAS6-Axl-Akt pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Camundongos , Hormônio Foliculoestimulante/farmacologia , Células da Granulosa/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Endogâmicos ICR
18.
Cancer Commun (Lond) ; 44(1): 23-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985191

RESUMO

Lung cancer is the second most common and the deadliest type of cancer worldwide. Clinically, non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer; approximately one-third of affected patients have locally advanced NSCLC (LA-NSCLC, stage III NSCLC) at diagnosis. Because of its heterogeneity, LA-NSCLC often requires multidisciplinary assessment. Moreover, the prognosis of affected patients is much below satisfaction, and the efficacy of traditional therapeutic strategies has reached a plateau. With the emergence of targeted therapies and immunotherapies, as well as the continuous development of novel radiotherapies, we have entered an era of novel treatment paradigm for LA-NSCLC. Here, we reviewed the landscape of relevant therapeutic modalities, including adjuvant, neoadjuvant, and perioperative targeted and immune strategies in patients with resectable LA-NSCLC with/without oncogenic alterations; as well as novel combinations of chemoradiation and immunotherapy/targeted therapy in unresectable LA-NSCLC. We addressed the unresolved challenges that remain in the field, and examined future directions to optimize clinical management and increase the cure rate of LA-NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Terapia Combinada , Prognóstico
19.
Eur J Med Chem ; 264: 116032, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104378

RESUMO

Human epidermal growth factor receptor 2 (HER2) represents an ideal target for antibody drug development, abnormal expression of the HER2 gene is associated with multiple tumor types. Pertuzumab, as the first monoclonal antibody inhibitor of HER2 dimerization, has been FDA-approved for HER2-positive patients. In order to enhance the activity of HER2-targeted peptide-drug conjugates (PDCs) developed based on pertuzumab, a novel class of conjugates 1-9 was designed and synthesized by fusing the N-terminal peptide sequence of the second mitochondria-derived activator of caspases (SMAC) with P1, followed by conjugation with CPT molecules. Compound 4 exhibited excellent in vitro anti-tumor activity across the three HER2-positive cell lines, comparable to the activity of CPT. Apoptosis induction assays indicated that the synergistic effect of the SMAC sequence enhanced the pro-apoptotic activity of the conjugate. Western Blot analysis and Caspase activity studies validated the mechanism through which SMAC peptides, in synergy with CPT, enhance the activity of PDCs. In vivo studies demonstrated that compound 4 possesses superior anti-tumor activity compared to CPT and can effectively mitigate potential renal toxicity associated with free SMAC peptides. In conclusion, conjugate 4 exhibited excellent anti-tumor activity both in vitro and in vivo, offering potential for further development as a novel peptide-conjugated drug.


Assuntos
Caspases , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Caspases/metabolismo , Morte Celular , Peptídeos/farmacologia , Anticorpos Monoclonais , Linhagem Celular Tumoral
20.
Chem Commun (Camb) ; 59(85): 12779-12782, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37815463

RESUMO

Efficient one-step oxidation of isobutylene to methacrylic acid was achieved over a Mo-V-Te-Cs catalyst. Mo-O-V as "asymmetric lattice oxygen" brings high activity. Te and Cs provide a suitable medium acidity to enhance the selectivity. A record single-step yield of 65% for methacrylic acid was obtained from isobutylene oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...